Study on luminescent properties of Eu3+ doped new type yttrium tungsten oxide nanophosphors.

نویسندگان

  • Xiaohui Feng
  • Qingyu Meng
  • Baojiu Chen
  • Shuchen Lu
  • Jiangting Sun
  • Hongyan Ding
چکیده

In this paper, a novel nanophosphor, Y10W2O21:Eu, was synthesized through co-precipitation which is a simple and low-costing method. The structure and morphology of the nanocrystal samples were characterized by using XRD and FE-SEM. The emission spectra, excitation spectra and fluorescence decay curves were measured. J-O parameters, quantum efficiencies of Eu3+ 5D0 energy level, color coordinates and Huang-Rhys factor of Y10W2O21:Eu nanophosphors were calculated. The results indicate that EU3+ 5D0-7F2 red luminescence at 610 nm can be effectively excited by 394 nm near-UV light and 464 nm blue light in Y10W2O21 host, which is similar to the familiar Eu3+ doped tungstate phosphors (e.g., Gd2(WO4)3:Eu, CaWO4:Eu). Besides, compared with the other types of tungstate phosphors, a less expensive tungsten was used, which can effectively reduce cost. Therefore, the Y10W2O21:Eu red nanophosphors may have a potential application for white LED.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of doped combination zirconium-tungsten, zirconium- molybdenum and molybdenum-tungsten on single-wall vanadium oxide nanotube in hydrogen gas adsorption

In this study, doped vanadium oxide nanotubes were evaluated using different software to study the absorption of hydrogen gas. Vanadium oxide nanotubes are one of the options for absorption and storage hydrogen gas. In this research study for the first time, the Monte Carlo simulation was used to investigate the hydrogen gas absorption behavior in molybdenum-tungsten, molybdenum-zirconium and z...

متن کامل

Synthesis, Characterization and Photoluminescence Spectroscopy of Lanthanide ion doped Oxide Materials

Main thrust of this work includes exploring lanthanide luminescence for structural probe, synthesizing white light emitting materials and understanding defect induced emission in nanomaterials. Refractory materials like zirconia and thoria doped with Eu3+ have been synthesized at a low temperature using reverse micellar route and investigated the photoluminescence properties of Eu doped ThO2 an...

متن کامل

Effects of local structure of Ce3+ ions on luminescent properties of Y3Al5O12:Ce nanoparticles

Ce(3+)-doped yttrium aluminum garnet (YAG:Ce) nanocrystals were successfully synthesized via a facile sol-gel method. Multiple characterization techniques were employed to study the structure, morphology, composition and photoluminescence properties of YAG:Ce nanophosphors. The YAG:Ce0.0055 sintered at 1030 °C exhibited a typical 5d(1)-4f(1) emission band with the maximum peak located at 525 nm...

متن کامل

Red, Green, and Blue Photoluminescence of Ba2SiO4:M (M = Eu3+, Eu2+, Sr2+) Nanophosphors

Divalent europium doped barium orthosilicate is a very important phosphor for the production of light emitting diodes (LEDs), generally associated to the green emission color of micron-sized crystals synthesized by means of solid-state reactions. This work presents the combustion synthesis as an energy and time-saving preparation method for very small nano-sized Ba₂SiO₄ particles, flexibly dope...

متن کامل

Morphology- and size-dependent spectroscopic properties of Eu3+-doped Gd2O3 colloidal nanocrystals

The synthesis, morphological characterization, and optical properties of colloidal, Eu(III) doped Gd2O3 nanoparticles with different sizes and shapes are presented. Utilizing wet chemical techniques and various synthesis routes, we were able to obtain spherical, nanodisk, nanotripod, and nanotriangle-like morphology of Gd2O3:Eu3+ nanoparticles. Various concentrations of Eu3+ ions in the crystal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of nanoscience and nanotechnology

دوره 11 11  شماره 

صفحات  -

تاریخ انتشار 2011